A New Type Of Difference Sequence Spaces

Binod CHANDRA TRIPATHY¹ and AYHAN ESI²

¹Mathematical Sciences Division; Institute of Advanced Study in Science and Technology; Paschim Boragaon; GARCHUK; GUWAHATI-781 035, INDIA
²Inonu University, Science and Art Faculty in Adiyaman, 02040, Adıyaman, TURKEY
tripathybc@yahoo.com
(Received: 17.08.2005; Accepted: 12.12.2005)

Abstract: In this paper we introduce the notion of the difference operator \(\Delta_m x_k \) for a fixed \(m \in \mathbb{N} \). We define the sequence spaces \(\ell^\infty (\Delta_m) \), \(c(\Delta_m) \) and \(c_0(\Delta_m) \) \((m \in \mathbb{N})\) and study some topological properties of these spaces. We obtain some inclusion relations involving these sequence spaces.

2000 AMS : 40 A 05; 40 C 05; 46 A 45.

Key words: Difference sequence space, Solid space, Symmetric space, Completeness

Fark Dizi Uzaylarının Yeni Bir Şekli

Özet: Bu çalışmada sabit bir \(m \in \mathbb{N} \) sayısı için \(\Delta_m x_k \) fark operatörü yardımıyla \(\ell^\infty (\Delta_m) \), \(c(\Delta_m) \) ve \(c_0(\Delta_m) \) dizi uzayları tanımlanıp, bu uzaylar için bazı topolojik özellikler çalışılmış ve bu uzaylara ait bazı kapsam bağıntıları verilmiştir.

Anahtar Kelimeler: Fark dizi uzayı, Solid uzay, Simetrik uzay, Tamlık

1. Introduction

Throughout the paper \(w, \ell^\infty, c, \) and \(c_0 \) denote the spaces of all, bounded, convergent, and null sequences \(x = (x_k) \) with complex terms, respectively, normed by \(||x||_\infty = \sup_k |x_k|\).

The zero sequence is denoted by \(\theta = (0,0,0,\ldots) \).

Kizmaz [3] defined the difference sequence spaces \(\ell^\infty (\Delta), c(\Delta) \) and \(c_0(\Delta) \) as follows:

\[Z(\Delta) = \{ x = (x_k) : (\Delta x_k) \Delta Z \}, \]

for \(Z = \ell^\infty, c \) and \(c_0 \), where \(\Delta x = (\Delta x_k) = (x_k - x_{k+1}) \), for all \(k \in \mathbb{N} \).

The above spaces are Banach spaces, normed by \(||x||_\Delta = |x_1| + \sup_k ||\Delta x_k||\).

The idea of Kizmaz [3] was applied to introduce different type of difference sequence spaces and study their different properties by Tripathy ([6], [7]), Et and Esi [8] and many others.

2. Definitions and Preliminaries

A sequence so ace \(E \) said to be solid (or normal) if \((x_k) \in E \) implies \((\alpha_k x_k) \in E \) for all sequences of scalars \((\alpha_k) \) with \(|\alpha_k| \leq 1 \) for all \(n \in \mathbb{N} \).

A sequence space \(E \) is said to be monotone if it contains the canonical preimages of all its step spaces.

A sequence space \(E \) is said to be convergence free if \((y_k) \in E \) whenever \((x_k) \in E \) and \(y_k = 0 \) whenever \(x_k = 0 \).

A sequence space \(E \) is said to be a sequence algebra if \((x_k y_k) \in E \) whenever \((x_k) \in E \) and \((y_k) \in E \).

A sequence space \(E \) is said to be symmetric if \((x_{\pi(k)}) \in E \) whenever \((x_k) \in E \), where \(\pi(k) \) is a permutation on \(\mathbb{N} \).

For \(r > 0 \), a nonempty subset \(V \) of a linear space is said to be absolutely \(r\)-convex if \(x, y \in V \)
and $|\lambda|^r + |\mu|^r \leq 1$ together imply that

$\lambda x + \mu y \in V$. A linear topological space X is said
to be r-convex if every neighborhood of $\theta \in X$
contains as absolutely r-convex neighborhood of $\theta \in X$ (see for instance Maddox and Roles [5]).

Let $m \in N$ be fixed, then we introduce the
following new type of difference sequence spaces

$$Z(\Delta_m) = \{x = (x_k) \in w: \Delta_m x \in Z\},$$

for $Z = \ell_{\infty}, c$, and c_0, where

$$\Delta_m x = (\Delta_m x_k) = (x_k - x_{k+m})$$

for all $k \in N$.

For $m = 1$, $\ell_{\infty}(\Delta_m) = \ell_{\infty}(\Delta)$, $c(\Delta_m) = c(\Delta)$ and $c_0(\Delta_m) = c_0(\Delta)$. Hence the introduced notion generalizes
the notion of difference sequences studied by Kizmaz [3].

3. Main Results

In this section we establish the results of this
article. The proof of the following result is a routine
verification.

Proposition 1. The classes of sequences

$$\ell_{\infty}(\Delta_m), c(\Delta_m) \text{ and } c_0(\Delta_m)$$

are normed linear spaces, normed by

$$\|x\|_{\lambda_m} = \sum_{r=1}^{m} |x_r| + \sup_k |\Delta_m x_k|$$

(1)

Proof. Let α, β be scalars and $(x_k), (y_k) \in \ell_{\infty}(\Delta_m)$.

Then

$$\sup_k |\Delta_m x_k| < \infty \text{ and } \sup_k |\Delta_m y_k| < \infty$$

(2)

Hence

$$\sup_k |\Delta_m (\alpha x_k + \beta y_k)| \leq |\alpha| \sup_k |\Delta_m x_k| + |\beta| \sup_k |\Delta_m y_k| < \infty, \text{ by (2).}$$

Hence $\ell_{\infty}(\Delta_m)$ is a linear space. Similarly it can
be shown that $c(\Delta_m)$ and $c_0(\Delta_m)$ are linear spaces.

Next for $x = 0$, we have $\|\theta\|_{\lambda_m} = 0$. Conversely,
let $\|x\|_{\lambda_m} = 0$. Then

$$\|x\|_{\lambda_m} = \sum_{r=1}^{m} |x_r| + \sup_k |\Delta_m x_k| = 0.$$

$\Rightarrow x_r = 0$ for $r = 1, 2, \ldots, m$ and $|\Delta_m x_k| = 0$ for
all $k \in N$.

Consider $k = 1$ i.e. $|\Delta_m x_1| = 0 \Rightarrow |x_1 - x_{1+m}| =
\Rightarrow x_{m+1} = 0$, since $x_m = 0$.

Proceeding in this way we have $x_k = 0$, for all $k \in N$.

$$\|x + y\|_{\lambda_m} = \sum_{r=1}^{m} |x_r + y_r| + \sup_k |\Delta_m (x_k + y_k)|$$

$$\leq \sum_{r=1}^{m} |x_r| + \sup_k |\Delta_m x_k| + \sum_{r=1}^{m} |y_r| + \sup_k |\Delta_m y_k|$$

$$= \|x\|_{\lambda_m} + \|y\|_{\lambda_m}$$

Finally

$$||\lambda x||_{\lambda_m} = \sum_{r=1}^{m} |\lambda x_r| + \sup_k |\Delta_m (\lambda x_k)|$$

$$= |\lambda| \|x\|_{\lambda_m}.$$"
A New Type of Difference Sequence Spaces

\[\left\| x^n - x^i \right\|_{\infty} = \sum_{r=1}^{m} |x^n_r - x^i_r| + \sup_k \left| \Delta_m x^n_k - \Delta_m x^i_k \right| < \varepsilon \]

, for all \(n, i \geq n_0 \). - - - (3)

Hence \(|x^n_k - x^i_k| < \varepsilon \) for all \(n, i \geq n_0 \) and \(k = 1, \ldots, m \).

\[\Rightarrow \left(x^n_k \right) \text{ is a Cauchy sequence in } C \text{ for } k = 1, 2, \ldots, m. \]

\[\Rightarrow \left(x^i_k \right) \text{ is a convergent in } C \text{ for } k = 1, 2, \ldots, m. \]

Let \(\lim_{i \to \infty} x^i_k = x_k \), say for \(k = 1, 2, \ldots, m \).

From (3) we have \(|\Delta_m x^n_k - \Delta_m x^i_k| < \varepsilon \), for all \(n, i \geq n_0 \) and all \(k \in N \). Hence \(\left(\Delta_m x^n_k \right) \) is a Cauchy sequence in \(C \) for all \(k \in N \). Thus \(\left(\Delta_m x^n_k \right) \) is convergent in \(C \), let \(\lim_{i \to \infty} \Delta_m x^i_k = y_k \), say for each \(k \in N \). Since \(\lim_{i \to \infty} x^i_k = x_k \), exists for \(k = 1, 2, \ldots, m \), so we have \(\lim_{i \to \infty} x^i_k = x_k \), exists for each \(k \in N \).

We have

\[\lim_{i \to \infty} \sum_{i=1}^{m} |x^n_i - x_i| = \sum_{i=1}^{m} |x^n_i - x_i| < \varepsilon, \]

for all \(i \geq n_0 \), and

\[\lim_{i \to \infty} |x^n_k - x^i_k| \leq |x^n_k - (x^i_{k+m} - x^i_{k+m})|, \]

for all \(k \in N \) and \(n \geq n_0 \).

Hence for all \(i \geq n_0 \), we have

\[\sup_k |\Delta x^n_k - \Delta x^i_k| < \varepsilon. \]

Thus

\[\sum_{r=1}^{m} |x^n_r - x_r| + \sup_k |\Delta x^n_k - \Delta x^i_k| < 2\varepsilon, \]

\[\Rightarrow (x^n - x) \in \ell_\infty(\Delta_m), \text{ for all } i \geq n_0. \]

Thus \(x = x^n - (x^n - x) \in \ell_\infty(\Delta_m), \text{ for all } i \geq n_0. \)

since \(\ell_\infty(\Delta_m) \) is a linear space.

Hence \(\ell_\infty(\Delta_m) \) is complete.

Similarly it can be shown that the spaces \(c(\Delta_m) \) and \(c_o(\Delta_m) \) are also complete.

The following result is a consequence of the above result and the definition of BK-space.

Proposition 4. The spaces \(\ell_\infty(\Delta_m), c(\Delta_m) \) and \(c_o(\Delta_m) \) are BK-spaces.

Since the inclusions \(c(\Delta_m) \subset \ell_\infty(\Delta_m) \) and \(c_o(\Delta_m) \subset \ell_\infty(\Delta_m) \) are proper, the following result follows from Theorem 3.

Proposition 5. The spaces \(c(\Delta_m) \) and \(c_o(\Delta_m) \) are nowhere dense subsets of \(\ell_\infty(\Delta_m) \).

Theorem 6. The spaces \(\ell_\infty(\Delta_m), c(\Delta_m) \) and \(c_o(\Delta_m) \) are not solid spaces.

Proof. The proof follows from the following examples.

Example 1. Let \(x_k = k \) for all \(k \in N \). Consider the sequence of scalars \((\alpha_k) \) defined by \(\alpha_k = im + 1 \), for \(i = 1, 2, \ldots, \) and \(\alpha_k = 0 \), otherwise. Then \((x_k) \in c(\Delta_m) \subset \ell_\infty(\Delta_m) \), but \((\alpha_k x_k) \notin \ell_\infty(\Delta_m) \).

Hence the spaces \(c(\Delta_m) \) and \(\ell_\infty(\Delta_m) \) are not solid.

For the case \(c_o(\Delta_m) \), consider the sequence \(x_k \) = 1 for all \(k \in N \) and the sequence \((\alpha_k) \) defined as above. Then \((x_k) \in c_o(\Delta_m) \), but \((\alpha_k x_k) \notin c_o(\Delta_m) \).

Hence \(c_o(\Delta_m) \) is not solid.

Theorem 7. (i) The space \(c_o(\Delta) \) is symmetric.

(ii) The spaces \(\ell_\infty(\Delta_m), c(\Delta_m) \) and \(c_o(\Delta_m) \) (for \(m > 1 \)) are not symmetric spaces.

Proof. (i) The first part is known. For the second part, consider the following example.

Example 2. Let \(m = 2 \) and consider the sequence \((x_k) \) defined by \(x_k = 1 \) for \(k \) odd and \(x_k = 2 \) for \(k \) even. Consider the rearranged sequence \((y_k) \) as \(y_k = \begin{cases} x_k & \text{if } k \text{ odd} \\ x_{k+1} & \text{if } k \text{ even} \end{cases} \). Then \((y_k) \notin c_o(\Delta_2) \). Hence \(c_o(\Delta_2) \) is not symmetric.

Next let \(m = 1 \) and consider the sequence \((x_k) \) defined as \(x_k = k \) for all \(k \in N \). Consider its rearrangement defined...
as
\[
(y_k) = \left\{ x_1, x_2, x_4, x_3, x_9, x_5, x_{16}, x_6, x_{25}, \right. \\
\left. x_7, x_{36}, x_8, x_{49}, x_{10}, \ldots \right\}
\]

Then \((x_k) \in c(\Delta) \subset \ell_{\infty}(\Delta) \), but \((y_k) \not\in \ell_{\infty}(\Delta) \).
Hence the spaces \(c(\Delta) \) and \(\ell_{\infty}(\Delta) \) are not symmetric.

Theorem 8. The spaces \(\ell_{\infty}(\Delta_m) \), \(c(\Delta_m) \) and \(c_o(\Delta_m) \) are not convergence free.

Proof. The result follows from the following example.

Example 3. Let \(m = 2 \) and consider the sequence \((x_k)\) defined as \(x_k = 1 \), for all \(k \in \mathbb{N} \). Then \((x_k) \in c_o(\Delta_2) \subset c(\Delta_2) \subset \ell_{\infty}(\Delta_2) \). Hence the spaces \(c_o(\Delta_m) \), \(c(\Delta_m) \) and \(\ell_{\infty}(\Delta_m) \) are not convergence free.

Theorem 9. The spaces \(\ell_{\infty}(\Delta_m) \), \(c(\Delta_m) \) and \(c_o(\Delta_m) \) are not monotone.

Proof. The proof follows from the following example.

Example 4. Let \(m = 1 \) and consider the sequence \(x = (x_k) \) defined as \(x_k = 1 \), for all \(k \in \mathbb{N} \). Then \((x_k) \in c_o(\Delta) \). Now consider the sequence \((y_k)\) in its preimage space defined by \(y_k = 1 \), for \(k \) odd and by \(y_k = 0 \), for \(k \) even, then \((y_k) \not\in c_o(\Delta) \). Hence the space \(c_o(\Delta) \) is not monotone.

Next consider the sequence \(x = (x_k) \) defined as \(x_k = k \), for all \(k \in \mathbb{N} \). Then \((x_k) \in c(\Delta) \subset \ell_{\infty}(\Delta) \). Now consider the sequence \((y_k)\) in its preimage space, defined as above, then \((y_k) \not\in \ell_{\infty}(\Delta) \). Hence the spaces \(c(\Delta_m) \) and \(\ell_{\infty}(\Delta_m) \) are not monotone.

Theorem 10. \(\ell_{\infty}(\Delta_m) \), \(c(\Delta_m) \) and \(c_o(\Delta_m) \) are 1-convex.

Proof. If \(0 < \delta < 1 \), then \(V = \left\{ x = (x_k) : \left\| x \right\|_{\Delta_m} \leq \delta \right\} \) is an absolutely 1-convex set, for let \(x, y \in V \) and \(|\lambda| + |\mu| \leq 1 \), then
\[
\left\| \lambda x + \mu y \right\|_{\Delta_m} \leq (|\lambda| + |\mu|) \delta \leq \delta.
\]
This completes the proof.

4. References